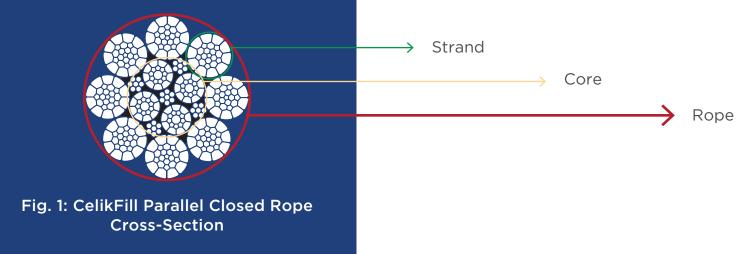
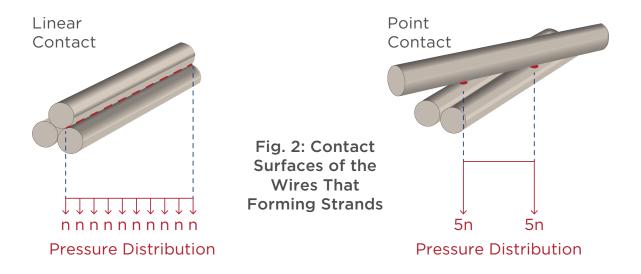
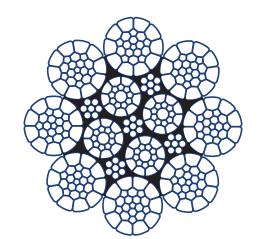


PARALLEL CLOSED WIRE ROPES CelikFill


STEEL WIRE ROPES



Parallel Closed Ropes (CelikFill):


"CelikFill" ropes with 8 outer strands with parallel structure, used in equipment with high strength requirements.

Non-parallel ropes are ropes in which the steel core and strands have different lay lengths. In parallel structured ropes, steel core and rope are produced at the same time and the rope is produced in equal lay length. This ensures homogeneous pressure distribution and linear contact between the wires. At the same time, it has an extra strength value thanks to its high fill factor. In parallel structured ropes, the contacts between wires are different compared to standard ropes. Standard ropes have point contacts due to different lay length values and directions. Deformation occurs at these contact points due to high pressure. In parallel structured ropes, the direction and step values are the same and the pressure is distributed in a balanced way by leaving the point contact point to linear contact.

8 x 26 WS PWRC COMPACT PARALLEL CLOSED ROPES

Ultra High **Breaking Force**

No Swivel

Lubricate Compacted

Parallel Array

CelikFill 8 x 26 WS PWRC Compact							
Rope	Unit	Minimum	Breaking L	Rope	Ur		
Diameter (mm)	Weight kg/m	1770 [N/mm²]	1960 [N/mm²]	2160 [N/mm²]	Diameter (mm)	Wei kg	
10	0,473	79,7	88,2	97,2	26	3,1	
11	0,572	96,4	107	118	27	3,4	
12	0681	115	127	140	28	3,7	
13	0,799	135	149	164	29	3,9	
14	0,927	156	173	191	30	4,2	
15	1,064	179	198	219	31	4,5	
16	1,211	204	226	249	32	4,8	
17	1,367	230	255	281	33	5,1	
18	1,533	258	286	315	34	5,4	
19	1,708	288	318	351	35	5,7	
20	1,892	319	353	389	36	6,1	
21	2,086	351	389	429	37	6,4	
22	2,289	386	427	470	38	6,3	
23	2,502	421	467	514	39	7,1	
24	2,724	459	508	560	40	7,5	
25	2,956	498	551	608			

Rope	Unit	Breaking L	oad (kN)	
Diameter (mm)	Weight kg/m	1770 [N/mm²]	1960 [N/mm²]	2160 [N/mm²]
26	3,197	538	596	657
27	3,448	581	643	709
28	3,708	624	691	762
29	3,978	670	742	817
30	4,257	717	794	875
31	4,546	765	848	934
32	4,844	816	903	995
33	5,151	867	960	1059
34	5,468	921	1020	1124
35	5,794	976	1080	1191
36	6,130	1032	1143	1260
37	6,475	1090	1207	1331
38	6,380	1150	1274	1404
39	7,194	1211	1342	1478
40	7,568	1274	1411	1555

FEATURES

- Parallel Lay for Wire And Strand High Lifetime Performance
- Ultra High Strength
- Bright and Galvanised Wires

USAGE AREAS

- Container Crane
- Offshore Crane
- Harbour Crane
- Mobile Crane

Ertuğrul Gazi Mahallesi Şehitler Cad. No:2 41180 Kartepe / Kocaeli / TÜRKİYE

celikhalat.com.tr chsatis@celikhalat.com.tr +90 (262) 371 12 80 (PBX)

Çelik Halat Netherlands BV

Nassaulaan 17-B; 2011 PB Haarlem The Netherlands

ROTATION RESISTANT

WIRE ROPES

CelikFlex

STEEL WIRE ROPES

"

Rotation Resistant and Semi Rotation Resistant Wire Ropes:

When the helically-shaped wire ropes are subjected to load, two types of forces are generated. These are tensile and torque forces. Tensile forces are present along with the axis of strand and these forces cause elongation of the wire ropes with increasing load. Torque forces are present in the tangential direction of the rope axis and these forces cause the moment that tend to rotate the rope around its axis. With increasing load and high lifting heights, the rope starts to rotate around its axis and unlay itself in order to eliminate the torque. Wire rope construction generates torque between layers and this torque increases with applied load. If the wire rope is used in high lift applications, conventional 6 or 8 stranded wire ropes are twisted as shown in figure 1.

Fig. 1:
Rotation of Conventional
6 Stranded Ropes in
High Lifting Applications

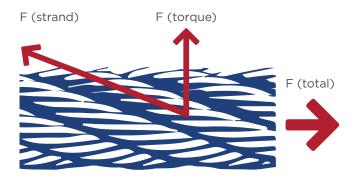


Fig. 2: Torque Generated due to the Applied Force on Conventional 6
Stranded Ropes

Wire ropes are classified in three groups according to ISO 21669 and DIN EN 12385-3 in terms of its rotational characteristics of a 1000 x d length rope under load. These are;

- Ropes, rotating more than 1440 degrees under load, are defined as "not rotation resistant".
- Ropes, rotating between 360 and 1440 degrees under load, are defined as "semi rotation resistant".
- Ropes, rotating below 360 degrees under load, are defined as "rotation resistant".

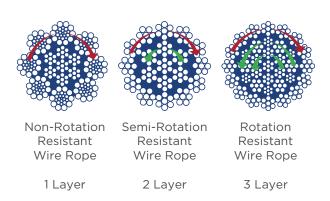


Fig. 3: Rotational Behavior in Different Constructions

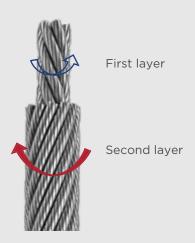


Fig. 4: Rotation Behaviour of (Semi) Rotation Resistant Wire Ropes

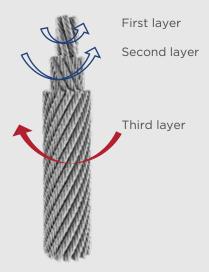
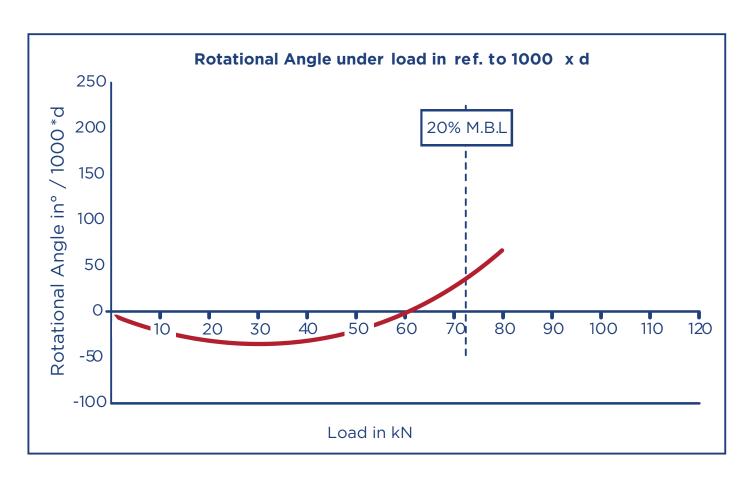
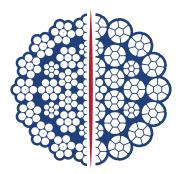


Fig. 5: Rotation Behaviour of Rotation Resistant Wire Rope

Rotation resistant wire ropes are designed for the purpose of balancing the torque. Principally, these wire ropes are designed with 2 or 3 layers; the independent wire rope core (IWRC) and outer strands (one or two layers). These layer's lay directions are opposite to each other.

The outer layer is twisted in the reverse direction with respect to inner layers to generate counter acting torsional forces. By this way, outer layer torque forces are eliminated by the inner layer torque forces. Once the load is applied, the rope will not rotate (or rotate to some extent with conforming to rotation angle given below).




Chart 1: Shows the Results of Rotation Angle Behavior Under the Load

CelikFlex 357 PWRC

Diameter Range: 10-40(mm) Number Of Wires: 245 Average Fill Factor: 0,594 Average Spin Factor: 0,758

CelikFlex K357 PWRC

Diameter Range: 10-40(mm) Number Of Wires: 245 Average Fill Factor: 0,654 Average Spin Factor: 0,758

Swivel Tolerance Lubricate Preformed

Very High

Force

Breaking Compacted

Swivel

Tolerance Lubricate Preformed

35 x 7 WSC [(1+6)+6(1+6)+6x(1+6)/6(1+6)+16(1+6)]						
Rope Dia.	Unit Weight	Minimum Breaking Load (kN) t [Acc to Wire Tensile Strenght]				
(mm)	(kg/m)	1570 [N/mm2]	1770 [N/mm2]	1960 [N/mm2]	2160 [N/mm2]	
10	0,454	59,3	66,9	74,1	75,6	
11	0,549	71,8	81,0	89,6	91,5	
12	0,654	85,5	96,3	107	109	
13	0,767	100	113	125	128	
14	0,890	116	131	145	148	
15	1,022	134	151	167	170	
16	1,162	152	171	190	194	
17	1,312	172	193	214	218	
18	1,471	192	217	240	245	
19	1,639	214	242	267	273	
20	1,816	237	268	296	302	
21	2,002	262	295	327	333	
22	2,197	287	324	359	366	
23	2,402	314	354	392	400	
24	2,615	342	385	427	435	
25	2,838	371	418	463	473	
26	3,069	401	452	501	511	
27	3,310	433	488	540	551	
28	3,559	465	525	581	593	
29	3,818	499	563	623	636	
30	4,086	534	602	667	680	
32	4,649	608	685	759	774	
34	5,248	686	773	856	874	
36	5,884	769	867	960	980	
38	6,556	857	966	1.070	1.092	
40	7,264	950	1.070	1.185	1.210	

35	35 x 7 WSC Compact [(1+6)+6(1+6)+6x(1+6)/6(1+6)+16(1+6)]								
Rope Dia.	Unit Weight	Minimum Breaking Load (kN) [Acc to Wire Tensile Strenght]							-
(mm)	(kg/m)	1570 [N/mm2]	1770 [N/mm2]	1960 [N/mm2]	2160 [N/mm2]				
10	0,479	70,0	78,9	87,4	89,2				
11	0,580	84,7	95,5	106	108				
12	0,690	101	114	126	128				
13	0,809	118	133	148	151				
14	0,939	137	155	171	175				
15	1,078	158	178	197	201				
16	1,226	179	202	224	228				
17	1,384	202	228	253	258				
18	1,552	227	256	283	289				
19	1,729	253	285	316	322				
20	1,916	280	316	350	357				
21	2,112	309	348	386	393				
22	2,318	339	382	423	432				
23	2,534	370	418	462	472				
24	2,759	403	455	504	514				
25	2,994	438	493	546	558				
26	3,238	473	534	591	603				
27	3,492	511	576	637	650				
28	3,755	549	619	685	699				
29	4,028	589	664	735	750				
30	4,311	630	711	787	803				
32	4,905	717	808	895	913				
34	5,537	810	913	1011	1031				
36	6,207	908	1023	1133	1156				
38	6,916	1011	1140	1262	1288				
40	7,664	1120	1263	1399	1427				

DESCRIPTION

- Celik Flex 357 is suitable rope for high lifting height application with rotation resistance.
- High breaking load force
- Compacted strands
- Resistance to crushing with compacted strands
- Ensure rotational stability and flexibility

- Available in lang lay or ordinary lay
- Available in right hand and left hand
- Available lubricated and can be made out of galvanized/ungalvanized wires
- Available for multi-layer spooling

SUITABLE APPLICATIONS

- Main and whip hoist rope for towercranes
- Mobile cranes
- · Off shore crane

- Pillar crane
- Available for high lifting

Ertuğrul Gazi Mahallesi Şehitler Cad. No:2 41180 Kartepe / Kocaeli / TÜRKİYE

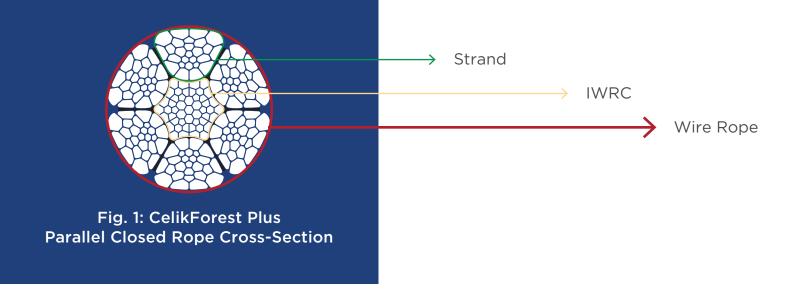
celikhalat.com.tr chsatis@celikhalat.com.tr +90 (262) 371 12 80 (PBX)

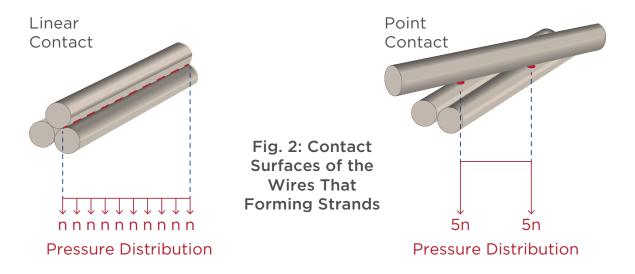
Çelik Halat Netherlands BV

Nassaulaan 17-B; 2011 PB Haarlem The Netherlands

PARALLEL SWAGE WIRE ROPES CelikForest Plus

STEEL WIRE ROPES


Parallel Swage Wire Ropes (CelikForest Plus):


"CelikForest Plus" These ropes used in equipment where high abrasion resistance and long life are required.

Non-parallel swage ropes by design have a cross contact between the steel core and the strands. For this reason, the pressure distribution on the cross-contact surfaces after the swage process is not homogeneous. This has a negative effect on the life performance of the rope. Parallel swage ropes are different from standard swage ropes in terms of contact surface. Standard ropes have point contacts due to different pitch values and directions.

Deformation occurs at these contact points due to high pressure.

The direction and lay values are the same in parallel constructions wire ropes. For this reason, a balanced distribution of pressure is achieved thanks to the linear contact instead of the point contact. Below is a sample demonstration.

6 x 26WS PWRC PARALLEL SWAGE WIRE ROPES

Ultra High **Breaking Force**

No Swivel

Swaged

Lubricate Compacted

Parallel Array

CelikForest Plus 6x26WS PWRC

Regular Swage					
Rope Diameter	Unit Weight	MBL (kN)			
(mm)	(kg/m)	1960 [N/mm2]			
8	0.361	59.3			
9	0.441	73.3			
10	0.529	96.9			
11	0.625	114			
12	0.729	134			
13	0.841	154			
14	0.961	176			
15	1.089	199			
16	1.225	224			
17	1.369	251			
18	1.521	279			
19	1.681	308			
20	1.849	339			
21	2.025	371			
22	2.209	405			
24	2.592	474			
26	3.042	556			

		Premium Swage	
Rope Diameter		Unit Weight	MBL (kN)
	(mm)	(kg/m)	1960 [N/mm2]
	8	0.361	66.1
	9	0.458	80.8
	10	0.576	106
	11	0.676	124
	12	0.841	144
	13	0.961	165
	14	1.089	188
	15	1.225	212
	16	1.444	237
	17	1.600	264
	18	1.764	293
	19	1.936	323
	20	2.120	354
	21	2.337	390
	22	2.565	428
	24	3.053	510
	26	3.583	598

FEATURES

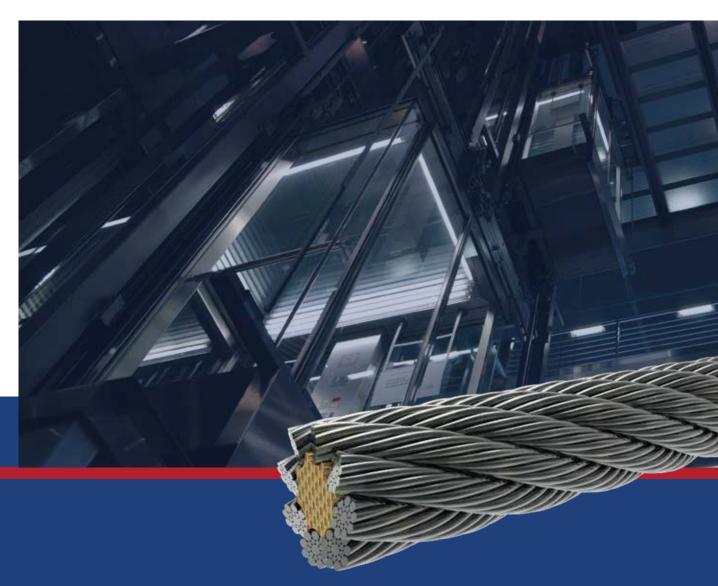
- Parallel Lay for Wire And Strand High Lifetime Performance
- Ultra High Strength
- Bright and Galvanised Wires

Ertuğrul Gazi Mahallesi Şehitler Cad. No:2 41180 Kartepe / Kocaeli / TÜRKİYE

celikhalat.com.tr chsatis@celikhalat.com.tr +90 (262) 371 12 80 (PBX)

Çelik Halat Netherlands BV

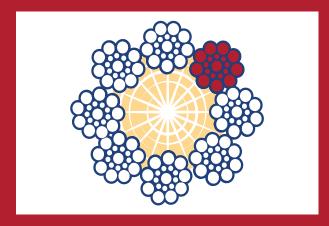
Nassaulaan 17-B; 2011 PB Haarlem The Netherlands



PRE-STRETCHED ELEVATOR

WIRE ROPES

CelikLift+


STEEL WIRE ROPES

"

Pre-Stretched Elevator Wire Ropes:

Elongation of wire ropes is one of the most significant issues encountered during the use of elevators. Running of the wire ropes on the sheaves, loading / unloading and acceleration / deceleration of elevators give rise to elongation of ropes. Rope elongation is segregated to 2 main parts as constructional elongation (Permanent Elongation) and elastic elongation.

Pic. 1: Red Strand Wire Rope

Permanent elongation is directly depends on the rope's design. Loose wire and strands resettles and starts to compress the core. After a while, core and strands come closer and then a slight diameter reduction and lenghthening of wire ropes takes place due to the helically shaped structure of wire ropes. Elongation, called as elastic elongation, is the elongation of the wires till the value of its yield strength. This elongation is completely recoverable during unloading.

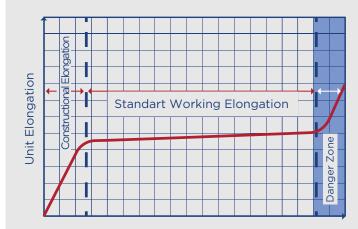
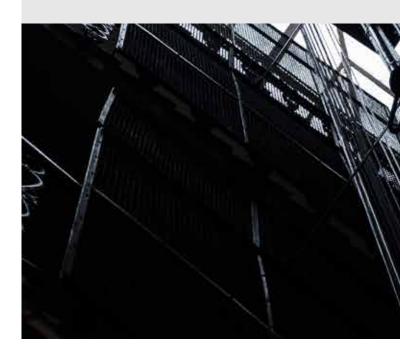



Fig. 1: Rope's Elongation Behaviour

Permanent Elongation causes;

- 1) Requirement of shortening of the ropes after working of elevator cars, in short period.
- 2) The rope elongation under load affects the deflection of the elevator car to floor level during loading and unloading. Therefore re-levelling of elevator car to floor level is needed.

Due to the elongation of elevator wire ropes during use, state-of-art design pre-stretched elevator wire ropes are recommended on lifting systems.

"

How to Manufacture Pre-Stretched Elevator Wire Ropes?

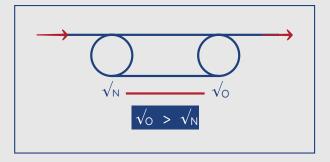


Fig. 2: Double Capstan System

On this point, it is required to subject wire ropes to stretching during manufacturing period. In order to manufacture pre-stretched wire rope, double capstan system is required stretched between these two capstans.

According to ISO 4344, where rope is supplied in the pre-stretched condition, in order to avoid rope damage, the maximum load to which the rope shall be subjected during the pre-stretching process shall not exceed 55% of the minimum breaking force of the rope.

Test Procedure of Wire Rope's Elongation

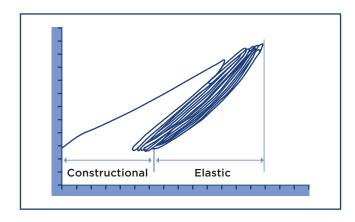


Fig. 3: Elongation Test Diagram

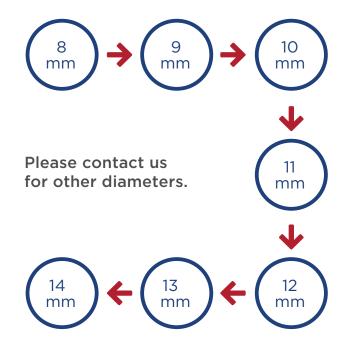
Test consist of 10 loading steps. After attaching of rope to elongation test system, rope is stretched up to 3% of minimum breaking load of the wire rope and lenght of ropes is measured, this measure is "£0". Then it is stretched up to 10% of its breaking load. This operation is repeated 10 times Prior to the 10th loading, rope should be hold at 3% of minimum breaking load and its lenght is measured, this length is "£1". At the end of the 10th loading, rope length should be recorded last time. This length is "£2".

Constructional Stretch

 $\delta c = (\ell_1 - \ell_0) / \ell_0 \times 100 \%$

Elastic Stretch

 $\delta_E = (\ell_2 - \ell) \quad \ell \times 100 \%$

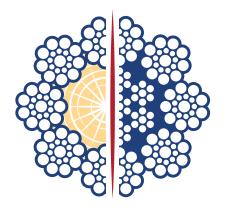

Number of strands in wire ropes and types of core effects elongation performance of ropes on usage.
6-strand wire ropes has slightly lower permanent elongation than 8-strand wire ropes. With wire strand core (WSC) and independent wire rope core (IWRC) wire ropes have lowest elongation performance.
For 8-strand pre-stretched elevator wire ropes with natural fibre core, constructional and elastics elongations were mentioned below.

In order to produce the best performing rope in terms of elongation behaviour, several methods are used for manufacturing of pre-stretched elevator wire ropes. Our pre-stretched elevator wire ropes shows elongation performance under 0,3 %. As a leading manufacturer of steel wire rope in industry, Çelik Halat

As a result of these trials:

ve Tel Sanayii A.Ş. has been manufacturing pre-stretched elevator wire ropes with diameter from 8 mm

to 14 mm.


	Standard Elevator Wire Ropes Elongation	Standard Pre-Stretched Elevator Wire Ropes Elongation	Çelik Halat's Pre-stretched Elevator Wire's Elongation
Construction Stretch	< 0,6 %	< 0,4 %	< 0,3 %
Elastic Stretch	< 0,2 %	< 0,2 %	< 0,2 %

8 x 19 S PRE-STRETCHED ELEVATOR WIRE ROPE

CelikLift 819+

Diameter Range: 8-14(mm) Number Of Wires: 152 Average Fill Factor: 0,444 Average Spin Factor: 0,839

CelikLift 819+ IWRC

Diameter Range: 8-14(mm) Number Of Wires: 201 Average Fill Factor: 0,581 Average Spin Factor: 0,779

No Swivel Tolerance Lubricate Preformed

No Swivel Tolerance Lubricate Preformed

8 x 19S FC 8[1+9+9]			Minimum Breaking Load (kN) [Acc to Wire Tensile Strength]		
Rope Dia. (mm)	Dia. Tolerance (%)	Unit Weight (kg/m)	1370/1770 [N/mm2]	1770 [N/mm2]	1960 [N/mm2]
8		0,218	29,4	33,2	36,8
9		0,275	37,3	42,0	46,5
10		0,340	46,0	51,9	57,4
11	+5	0,411	55,7	62,8	69,5
12		0,489	66	74,7	82,7
13		0,574	78	87,6	97,1
14		0,665	90	102	113

8 x 19S IWRC 8[1+9+9]				n Breaking L Wire Tensile	
Rope Dia. (mm)	Dia. Tolerance (%)	Unit Weight (kg/m)	1370/1770 [N/mm2]	1770 [N/mm2]	1960 [N/mm2]
8		0,260	35,8	40,3	44,7
9		0,330	45,3	51,0	56,5
10		0,407	55,9	63,0	69,8
11	+5	0,493	67,6	76,2	84,4
12		0,587	80	90,7	100
13		0,689	94	106	118
14		0,799	110	124	137

Please contact our sales officials for other diameters and detailed information.

6-strand wire ropes has slightly lower permanent elongation than 8-strand pre-stretched elevator wire ropes with natural fibre core.

Ertuğrul Gazi Mahallesi Şehitler Cad. No:2 41180 Kartepe / Kocaeli / TÜRKİYE

celikhalat.com.tr chsatis@celikhalat.com.tr +90 (262) 371 12 80 (PBX)

Çelik Halat Netherlands BV

Nassaulaan 17-B; 2011 PB Haarlem The Netherlands

PLASTIC COATED (EPIWRC)

WIRE ROPES

CelikPlast

STEEL WIRE ROPES

"

Why Plastic Coated EPIWRC Wire Ropes Are Needed?

Standard steel wire ropes are subjected to wear as a result of contact between the core and the strands. In addition, the environmental effects in the application area cause the rope to corrode over time. Standard IWRC wire ropes have a limited service life because of external impacts and adhesive wear.

Figure 1 shows the zones where the wear occurs on the ropes.

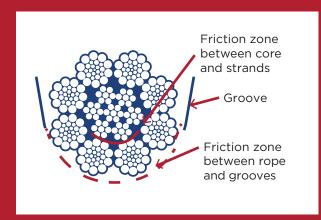


Fig. 1: Friction Zones

During the operation of the rope, friction occurs between the strands and the core of the steel rope which causes the rope to wear over time and eventually leads it to break.

"

How Does the Plastic Coating Protect the Ropes?

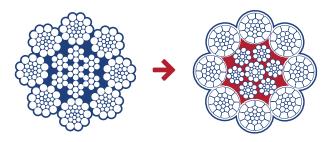


Fig. 1: Plastic Coating of Steel Core

Plastic coated (EPIWRC) steel wire ropes provide high strength and high abrasion resistance through its special design.

Plastic layer;

- Prevents contact between core and strands
- Prevents internal wire breaks
- Provides sealing of the lubricant
- Keeps out water and abrasive elements
- Acts as a cushion between the layers
- Creates a more stable structure in installation
- Absorbs dynamic energy
- Enables working at lower noise
- Reduces (or even prevents) the birdcage

In this way, ropes with longer service life than non-plastic coated ropes of the same diameter and construction are obtained. These plastic coated ropes are designed for use in areas where superior performance is needed. After plastic coating of the steel core, and product is obtained by special closing process.

Figure 3 shows the form of the plastic coating between the steel core and the strands.

Fig. 3: Form of The Plastic Coating

Çelik Halat has a cooperation agreement with the Technical University of Dresden on Laboratory and Testing Services. Within the scope of this agreement, tests were performed on plastic coated steel wire ropes at Dresden Technical University.

As a result of the tests;

- •In comparison with the theoretical estimation of the service life and the lifetime of running wire ropes acc. to Method Leipzig, the rope has exceeded the expectations.
- •The occurence of wire breaks is evenly distributed in all three bending zones.
- •The measured reduction of the diameter during the bending fatigue test does not show any notice able characteristics. The same applies to the rope elongation during the test procedure.
- •Ropes have some residual life time between the discarding stage and the rope failure.

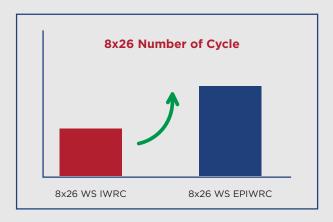


Chart 1. Number of Cycles for the 26 mm 8x26WS Rope Before Being Discarded From the System

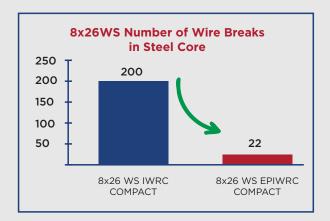
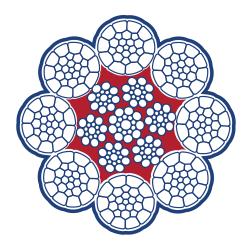



Chart 2. 26 mm 8x26WS Number of Wire Breaks in Steel Core

As a result of the tests conducted on 8x26WS Plastic Coated (EPIWRC) Stell Wire Rope of Çelik Halat, a significant decrease was observed in the wirebreak ages occurring in the steel core. Plastic coating of the steel core provides products with longer service life and higher strength. It is also seen that plastic coating protects the steel core.

11Plastic Coated Wire Ropes

EPIWRC ropes are produced in different constructions as **6 and 8 strands**. It can be used in heavy duty applications with its high abrasion resistance and high strength properties.

CELIKPLAST K826 EPIWRC MBL TABLE -

Rope Diameter	Unit Weight	Minimum Breaking Lo	oad (kN) [According to V	/ire Tensile Strength]
(mm)	(kg/m)	1770 (N/mm²)	1960 (N/mm²)	2160 (N/mm²)
20	1.960	312	345	380
21	2.161	343	380	419
22	2.372	377	417	460
23	2.592	412	456	503
24	2.822	449	497	547
25	3.063	487	539	594
26	3.312	526	583	642
27	3.572	568	629	693
28	3.842	611	676	745
29	4.121	655	725	799
30	4.410	701	776	855
32	5.018	797	883	973
34	5.664	900	997	1.100
36	6.350	1.010	1.120	1.1230
38	7.076	1.120	1.250	1.370
40	7.840	1.250	1.380	1.520
42	8.644	1.370	1.520	1.680
44	9.486	1.510	1.670	1.840
46	10.368	1.650	1.820	
48	11.290	1.790	1.990	
50	12.250	1.950	2.160	
52	13.250	2.110	2.330	

PROPERTIES

- Bending Fatigue Resistance Regular or Lang Lay Rope
- Self Lubrication
- Excellent Compaction
- Plastic Coating
- High Breaking Resistance

USAGE AREAS

- Hoist Ropes
- Trolley RopesHoist RopesGrab ExcavatorsLoading Bridges • Loading Bridges
- Boom Ropes

Please contact us for different structures in 6 and 8 strands.

Ertuğrul Gazi Mahallesi Şehitler Cad. No:2 41180 Kartepe / Kocaeli / TÜRKİYE

celikhalat.com.tr chsatis@celikhalat.com.tr +90 (262) 371 12 80 (PBX)

Çelik Halat Netherlands BV

Nassaulaan 17-B; 2011 PB Haarlem The Netherlands

COMPACTED WIRE ROPES

STEEL WIRE ROPES

Compact Steel Wire Ropes:

Ropes are produced by the closing process of strands with different mechanical properties and lay ratios; strands are produced from wires of different diameters and numbers.

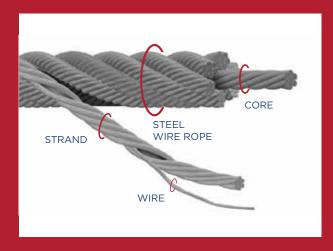


Fig. 1: Steel Wire Rope

Steel wire ropes produced in different constructions and properties are used in a wide range of sectors.

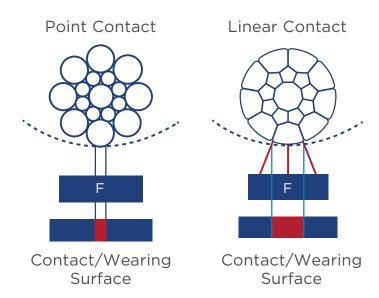


Fig. 2: Increasing of Contact Surface Area

Why is Compact Rope Preferred?

The wires of non-compact ropes which as shown in Fig. 2 have point contact with each other. Compact ropes are produced with reducing the diameter of the strands by the rolling system. Since the strands are subjected to a certain amount of force, their contact between each other change from circular to linear shape. In this way, the contact surface of wire to wire and strand to strand are expanded. Although applied load on the rope is constant, the pressure force applied on the wires will decrease due to the increase of the contact surface area. This will improve the service life of the rope by extending the wearing time of the wires.

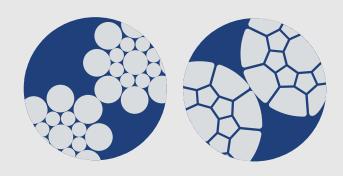


Fig. 3: Contact Between Strands

Due to the linear surface of wires, the strands a have linear contact with each other. In this way, the friction surface areas of the wires are expanded and this prevents the ropes from short wearing time. In order to obtain the same diameter, stranding is done with thicker wires in compact steel wire ropes with respect to non-compact steel wire ropes. As a result, compact steel wire ropes have a greater metallic cross-sectional area and higher breaking forces.

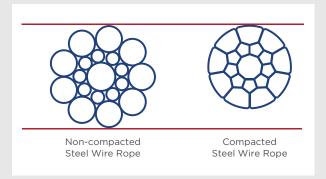


Fig. 4: Reducing of Diameter

In compacted wire rope production, the traditional rolling system was switched to the compact hydraulic rolling system. In the production with traditional system, the wires are exposed to higher levels of wear. As a result of abrasion of the outer wires, the life performance of the rope is adversely affected. In order to eliminate these negative effects, production is performed with hydraulic rolling system.

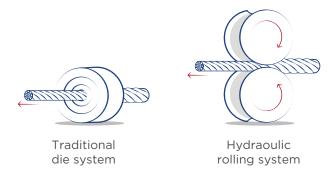


Fig. 5: Rolling System

Fig. 6: Image of a strand of wires compressed by disc compacting

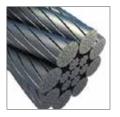


Fig. 7: 3D Drawing of Compact Steel Wire Rope

In the hydraulic rolling disc system, a hydraulic pressure is applied to the strands. Since discs are rotating during production, the wear of the strands is prevented. This improvement directly increases the life performance. In addition, by means of a gradual reduction in diameter of strands, the hydraulic disc system allows the use of thicker wires. Thus, metallic cross-sectional area is increased. The increase of the metallic cross-sectional area increases the strength of steel wire ropes directly.

Minimum Breaking Load (kN) (According to 1960N/mm² Wire Tensile Strenght)	
non compact	compact
steel wire ropes	steel wire ropes
Breaking Load (kN)	Breaking Load (kN)
715 kN	900 kN

Table 1: Breaking Test result of Ø32mm 6x36WS-IWRC

As a result of gradually reducing the diameter of the strand, abrasion of the wires are prevented. Compact steel wire ropes are produced with higher surface quality. The prototypes which were produced with rolling system were subjected to breaking tests. It was found that our 32 mm 6x36 WS compact ropes gives a rate of 26% breaking load increase compared to non-compacted ropes and a rate of 10% breaking load increase compared to traditional compacted ropes of the same diameter and structure.

Ertuğrul Gazi Mahallesi Şehitler Cad. No:2 41180 Kartepe / Kocaeli / TÜRKİYE

celikhalat.com.tr chsatis@celikhalat.com.tr +90 (262) 371 12 80 (PBX)

Çelik Halat Netherlands BV

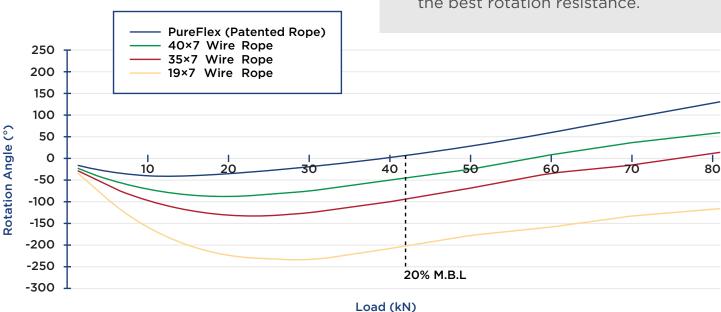
Nassaulaan 17-B; 2011 PB Haarlem The Netherlands

ROTATION RESISTANT WIRE ROPES

PureFlex

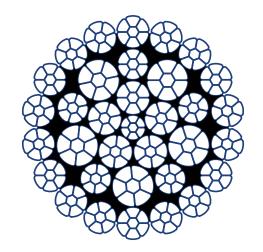
STEEL WIRE ROPES

Rotation Resistant Ropes (PureFlex):


PureFlex is a patented product of Çelik Halat. PureFlex, which has a (1 + 5 + 5 + 5 + 18) layer structure, provides ultra high rotation resistance and strength.

Wire ropes are exposed to rotation under load due to their helical structure. As a result of rotation, the rope is damaged and completes its service life. Rotational behavior, which creates a serious problem especially in high altitude.




Graph 2: Torque-Rotation Test performed on 19x7, 35x7, 40x7 and PureFlex Ropes

Graph 1: Torque Factor Values of Semi-Rotation Resistant and Rotation Resistant Ropes

Çelik Halat has a cooperation agreement with the Technical University of Dresden on Laboratory and Testing Services. Within the scope of this agreement, tests were performed on rotation resistant steel wire ropes at Dresden Technical University. As a result of the Torque-Rotation Test performed on 19x7, 35x7, 40x7 and PureFlex ropes, PureFlex has been the best rotation resistance.

PUREFLEX ROTATION RESISTANT ROPES

Very High Breaking Force

Swivel

Lubricate Compacted

PureFlex [(1+6)+5(1+6)+5x(1+6)+18(1+6)] Minimum Breaking Load (kN) Minimum Breaking Load (kN) Rope Unit Rope Unit Weight Dia. Dia. Weight (kg/m)(kg/m)(mm) (mm) [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] 0,463 70.0 78,9 87,4 89.2 2,449 0,560 84,7 95.5 2,667 0.667 2.894 0,782 3,130 0,907 3.375 3.630 1.042 1.185 3.894 1,338 4,167 1,500 4,741 1,671 5,352 6,000 1,852 2,042 6,686 2.241 7.408

FEATURES

- Extremely High Breaking Load
- Ultra High Rotation Resistance
- Excellent Compaction
- Regular or Lang Lay Rope

USAGE AREAS

- Overhead Crane
- Tower Crane
- Crawler Crane
- Harbour Crane
- Deck Cargo Crane
- Offshore Crane
- Mobile Crane

Ertuğrul Gazi Mahallesi Şehitler Cad. No:2 41180 Kartepe / Kocaeli / TÜRKİYE

celikhalat.com.tr chsatis@celikhalat.com.tr +90 (262) 371 12 80 (PBX)

Çelik Halat Netherlands BV

Nassaulaan 17-B; 2011 PB Haarlem The Netherlands

